A Near-Linear Algorithm for the Planar 2-Center Problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA hybrid algorithm for the path center problem
Let a graph G = (V;E) be given. In the path center problem we want to find a path P in G such that the maximum weighted distance of P to every vertex in V is minimized. In this paper a genetic algorithm and ahybrid of genetic and ant colony algorithms are presented for the path center problem. Some test problems are examined to compare the algorithms. The results show that for almost all exampl...
متن کاملA linear time algorithm for the backup 2-center problem on a tree
In this paper, we are concerned with the problem of deploying two servers in a tree network, where each server may fail with a given probability. Once a server fails, the other server will take the whole responsibility of service for all vertices (clients). Here, we assume that the servers do not fail simultaneously. In the backup 2-center problem, we want to deploy two servers at the vertices ...
متن کاملA Mathematical Modeling for Plastic Analysis of Planar Frames by Linear Programming and Genetic Algorithm
In this paper, a mathematical modeling is developed for plastic analysis of planar frames. To this end, the researcher tried to design an optimization model in linear format in order to solve large scale samples. The computational result of CPU time requirement is shown for different samples to prove efficiency of this method for large scale models. The fundamental concept of this model is ob...
متن کاملA Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem
In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 1997
ISSN: 0179-5376
DOI: 10.1007/pl00009311